Model Risk Management Whitepaper

Whitepaper

Re-Imagining Model Risk Management
to Capture the AI Opportunity in Banking

The Incumbent’s Secret Weapon?

Is MRM a key advantage for banks in the AI era?

As AI/ML models become more pervasive in banking, they are becoming subject to intensifying regulatory scrutiny. 

While sometimes seen as a barrier to speedy adoption of AI/ML models, MRM frameworks and experience can be turned into a source of competitive advantage.

Whitepaper Highlights:

  • How leading banks are responding to MRM challenges in a highly regulated environment (and what to expect from  regulators in the near future)
  • 5 areas where leading practitioners are beginning to incorporate technology enhancements to better manage AI model risk
  • Technical enhancements banks are introducing to manage model risk for AI and Machine Learning
  • How AI introduces the need for a new MRM operating model

 


 

Get the MRM whitepaper.


Meet the Authors

Anupam_Datta

Anupam Datta

Chief Scientist and co-founder

 

Professor of Electrical & Computer Engineering and Computer Science at Carnegie Mellon University for over a decade, Anupam is passionate about enabling responsible adoption of artificial intelligence.

Shameek-Kundu

Shameek Kundu

Head of Financial Services and Chief Strategy Officer

 

Shameek has spent most of his career in driving responsible adoption of data analytics/ AI in the financial services industry. Most recently, Shameek was Group Chief Data Officer at Standard Chartered Bank.

About TruEra

Pioneering Research - Enterprise Expertise


TruEra provides the first Model Intelligence platform, to help enterprises analyze machine learning, improve model quality and build trust. Powered by enterprise-class Artificial Intelligence (AI) Explainability technology based on six years of research at Carnegie Mellon University, TruEra’s platform helps eliminate the black box surrounding widely used AI and ML technologies. This visibility leads to higher quality, explainable models that achieve measurable business results, address unfair bias, and ensure governance and compliance.